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Abstract The QSPR study was performed between
topological indices and glass transition temperatures
(Tgs) of organic light-emitting diode materials based on
a diverse set of 80 compounds. A five-parameter corre-
lation with the squared correlation coefficient R2 =
0.9304 and an average absolute error of 7.7 K was ob-
tained through step-wise multi-linear regression analysis
with leave-one-out cross-validation. The new model
proposed is predictive and requires only topological
indices in the calculations and has the advantage of the
relative ease in calculating the descriptors, which makes
it easier to apply. The predicted results of the new model
are comparable to those of the existing equation by
using the Comprehensives Descriptors for Structural
and Statistical Analysis approach.

Keywords Glass transition temperature Æ
OLED Æ QSPR Æ Topological index

Abbreviations LOO: Leave-one-out Æ MLRA:
Multi-linear regression analysis Æ OLED:
Organic light-emitting diodes Æ QSPR: Quantitative
structure-property relationship

Introduction

Since the groundwork of Tang and Van Slyke [1], organic
light-emitting diodes (OLED) have continued to be the
subject of great interest because of their potential appli-
cation to full-color flat-panel displays. Compared with
liquid crystal displays, OLED displays possess wider
view angles and a faster response time. In contrast to

polymers, they are pure materials with well-defined
molecular structures and definite molecular weights
without any distribution. To obtain device quality,
OLED materials must exhibit good thermal stability.
The design and synthesis of thermally stable OLED
materials is a key goal in this area of research [2–6]. With
respect to the thermal stability, the glass transition tem-
perature (Tg) is the most important factor for OLED
materials. Therefore, a method for predicting the Tgs of
OLED materials from their molecular structure would
undoubtedly be valuable in the search for compounds
and materials suitable for long-time use.

Alternatively, quantitative structure–property rela-
tionships (QSPR) provide a promising method for the
estimation of the Tgs of OLED materials based on
descriptors derived solely from the molecular structure
to fit experimental data. The QSPR approach is based
on the assumption that the variation of the behavior of
the compounds, as expressed by any measured prop-
erties, can be correlated with changes in molecular
features of the compounds termed descriptors. The
advantage of this approach lies in the fact that it only
requires knowledge of the chemical structure and does
not depend on any experimental properties. QSPR has
been applied to the correlation of many diverse chem-
ical, physical, biochemical, and pharmacological prop-
erties of chemical compounds successfully. In
particular, Kim et al. [7] obtained a seven-parameter
QSPR model with correlation coefficient R2 = 0.989
for Tgs of small molecules by Genetic Algorithm (GA)
and multi-linear regression. However, only 16 electro-
luminescent molecules, out of 81 molecules in total, are
kept in the training set in their model. Recently, Yin
et al. [8] used the COmprehensive DEscriptors for
Structural and Statistical Analysis (CODESSA) pro-
gram to develop a QSPR model (R2 = 0.9270) for a set
of Tg values of 73 OLED molecules, with six descrip-
tors involved. These descriptors included constitutional,
electrostatic, thermodynamic and quantum-chemical
ones, which were derived from relatively sophisticated
calculations.
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Topological descriptors, the commonly used molecu-
lar descriptors, have been used widely in the correlation
of physicochemical properties of organic compounds.
In chemical graph theory, molecular structures are
normally represented as hydrogen-depleted graphs,
whose vertices and edges act as atoms and covalent
bonds, respectively. Chemical structural formulae can
then be assimilated to undirected and finite multi-graphs
with labeled vertices, commonly known as molecular
graphs. Topological indices, also known as graph theo-
retical indices, are descriptors that characterize molecu-
lar graphs and contain a large amount of information
about the molecule, including the numbers of hydrogen
and non-hydrogen atoms bonded to each non-hydrogen
atom, the details of the electronic structure of each atom,
and the molecular structural features.

The QSPR models produced with only topological
indices have advantages over models produced with
other descriptors because of the relative ease of calcu-
lating descriptors, thus lowering computational cost and

time [9, 10]. Further, because topological indices can be
calculated solely from the molecular structure, models
based on them are predictive. There have been numerous
models developed with only topological indices [10–15].
Some of the recent studies are outlined here. Garcı́a-
Domenech and Julián-Ortiz [10] correlated the refractive
indices and the glass transition temperatures of polymers
with their topological indices; for the prediction of
refractive indices, a ten-parameter correlation with R2 of
0.962 was obtained. The Tgs were predicted through a
model with R2 of 0.894, consisting of ten indices. Zhong
and Hu [15] have developed a QSPR model with R2 of
0.885 to predict the aqueous solubility of organic com-
pounds, with three topological indices involved.

The goal of the present study was to obtain an
exclusively topological-index-based QSPR model that
could predict Tg values for a diverse set of OLED
materials. Molecular structures of the OLED materials
were pre-optimized and only topological indices were
calculated using TSAR 3.3. A five-parameter correlation

Table 1 Compounds used in the study with experimental and calculated glass transition temperature (Tg) (K) values

Exp. Tg Calc. Tg DTg
a Structure Exp. Tg Calc. Tg DTg

a

TPTAB1 311 311.76 �0.76 NEFAPQ 389 394.02 �5.02
o-MTDAB 315 324.60 �9.60 EM3 391 387.72 3.28
m-MTDATz 315 341.36 �26.36 ENPCA 393 381.84 11.16
TPTAB2 319 314.74 4.26 PAPA 394 384.40 9.60
p-FTDAB 327 337.92 �10.92 TDAPB 394 372.99 21.01
o-MTDATz 328 325.12 2.88 EM2 395 387.39 7.61
p-MTDAB 328 335.21 �7.21 NPEFAPPP 395 395.26 �0.26
p-ClTDAB 337 335.511 1.489 NPCA 396 390.99 5.01
TPD 338 341.79 �3.79 F1AMB-1T 397 413.30 �16.30
(EtCz)2 343 350.16 �7.16 PATB4a 398 385.44 12.56
p-BrTDAB 345 331.56 13.44 TCB 399 404.98 �5.98
m-MTDATA 348 361.73 �13.73 NPNPPP 400 386.83 13.17
o-MTDATA 349 335.69 13.31 PPATC3a 401 400.31 0.69
AODF1 353 359.79 �6.79 TPTE 403 399.84 3.16
AODF2 353 356.10 �3.10 EFPCA 405 404.81 0.19
m-TTA 353 363.66 �10.66 PAE3d 406 424.49 �18.49
m-BPD 354 359.52 �5.52 EM1 407 425.44 �18.44
PhAMB-1T 357 351.11 5.89 MTBDAB 407 404.86 2.14
BMA-1T 359 355.43 3.57 TPOB 410 411.15 �1.15
TBB 361 352.19 8.81 PAE3c 412 397.32 14.68
TDATA 362 337.69 24.31 PATB4b 415 412.36 2.64
(PhCz)2 363 384.81 �21.81 PPATC3e 415 424.48 �9.48
BMA-2T 363 367.58 �4.58 NPECAPQ 415 404.34 10.66
BNpA-1T 364 374.36 �10.36 PATB4e 416 394.14 21.86
m-PTDATA 364 375.81 �11.81 PPATC3b 419 425.82 �6.82
BMA-3T 366 377.27 �11.27 PATB4d 423 433.25 �10.25
NPB 368 367.77 0.23 TCTA 423 419.30 3.70
BMA-4T 371 384.98 �13.98 NPECAPPP 425 424.91 0.09
EM4 372 381.44 �9.44 PPATC3d 429 434.16 �5.16
m-MTDAPB 378 383.42 �5.42 TMB-TB 433 430.61 2.39
p-DPA-TDAB 380 378.94 1.06 TCPB 445 436.66 8.34
BMB-2T 380 363.67 16.33 EPPCA 447 446.22 0.78
BMB-TB 382 386.69 �4.69 PATB4c 449 445.41 3.59
o-MTDAPB 382 371.60 10.40 PPATC3c 449 445.71 3.29
2-TNATA 383 385.26 �2.26 PPCA 453 453.27 �0.27
p-MTDAPB 383 378.43 4.57 MPPPCA 456 455.77 0.23
1-TNATA 386 388.75 �2.75 PPPCA 457 456.64 0.36
NPNAPQ 387 385.59 1.41 EFPPCA 458 465.31 �7.31
PAE3b 388 388.67 �0.67 PPACBN 467 455.81 11.19
BMB-3T 388 386.28 1.72 TBPSF 468 445.13 22.87

a DTg = Tg (exp)� Tg (calc)
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was then obtained through stepwise multi-linear
regression analysis (MLRA) with leave-one-out (LOO)
cross-validation. It can be used to predict the Tg values
of the OLED materials, with the advantage of relative
ease in calculating descriptors.

Materials and methods

Data set

The molecular structures of the OLED materials (Fig. 1)
and the corresponding experimental data (Table 1) were
taken from the article by Yin et al. [8]. A total of 80
compounds with extensive structural diversity were se-
lected as the data set. The reported Tg values ranged
from 311 to 468 K.

Descriptors generation and objective feature selection

The structures of all molecules were sketched on a PC
using the ChemDraw program in the ChemOffice 7.0
software package [16]. Their three-dimensional (3D)
structures were then generated, and their geometries were
pre-optimized with the semi-empirical AM1 method
using the Chem3D program in ChemOffice 7.0 to ensure
that low energy conformations were obtained for each
structure. The calculations were terminated if the energy
gradient was smaller than 0.01 kcal mol�1 Å�1. The
output files were used for producing a set of topological
descriptors using the TSAR 3.3 software [17], which
calculates the following topological descriptors (Ta-
ble 2): Wiener index [18], Balaban index [19–21], Ran-
dic–Kier–Hall subgraph connectivity indices [22–24],
Kier–Hall electrotopological state indices [25, 26], Kier–
Hall Kappa indices [27–29], and shape index [27–29]. The
definitions of these topological indices are given in
the Appendix.

A good correlation for structure and property should
possess a high correlation coefficient R, low standard

error s, and few variables. To this end, objective feature
selection was done to remove those descriptors that
provide minimal or redundant information. Descriptors
with an essentially constant value for all structures were
discarded. Pair-wise correlations of the remaining de-
scriptors were examined to remove descriptors that are
highly correlated with other descriptors. The reduction
of the descriptors was also done to ensure that the ratio
of descriptors to data set observations does not exceed
0.6, thereby reducing the risk of chance correlations
during model development [30].

QSPR model development

To develop QSPR models, MLRA [31] with LOO cross-
validation was applied to the data set. F-to-enter and
F-to-leave values were 3 and 2, respectively. At first,
multiple models were built using large subsets of ran-
domly selected descriptors. Then the number of de-
scriptors included in the procedure was gradually
reduced by the selection of those that had higher t-values
or appeared with higher frequency in previous models.
Models with the number of descriptors no higher than
eight, F-ratio higher than 40, cross-validated R2 greater
than 0.90, and correlation coefficient R higher than 0.95
between predicted and observed Tgs were validated
using compounds of the data set. The following statis-
tical characteristics of the models were used: correlation
coefficient R, cross-validated R (denoted by RCV) and
coefficients of determination R2 and R2

CV between
calculated and experimental Tgs. Models were consid-
ered to have high predictive ability and good stability, if
R2 > 0.90 and (R2 � R2

CV)/R
2 < 0.1.

Results and discussion

Step-wise MLRA with LOO cross-validation were used
to select the descriptors for the best model and the
quality was determined by examining the correlation
coefficient R, the significance test F and the standard
error s. Table 3 shows the best variable subsets of de-
scriptors with different statistical parameters during the
process of stepwise MLRA. It is noteworthy to point out
that the most important descriptor seems to be the sixth-
order path connectivity index 6 vp because this descrip-
tor appeared in all best variable subsets.

The best correlation model obtained for the entire
data set of 80 OLED materials contains five descriptors
(No. 9 in Table 3) and more descriptors evidently do not
improve the regression results. The best five-parameter
correlation equation is the following:

TgðKÞ ¼ � 131:568J þ 14:7783vvc � 18:2423vvp

þ 10:9776vp þ 16:6526vvp þ 469:005
ð1Þ

where R2 = 0.9304, R2
CV = 0.9157, F = 197.643, s =

10.489, n = 80.

Table 2 Definitions of the topological indices used in this work

Index
symbol

Definition

W Wiener path number
J Balaban index
m vp Path connectivity index of order m = 0–6
m vv p Path valence connectivity index of order m = 0–6
m vc Cluster connectivity index of order m = 3–4
m vv c Cluster valence connectivity index of order m = 3–4
4 vpc Path-cluster connectivity index of order 4
4 vv pc Path-cluster valence connectivity index of order 4
m vr Ring connectivity index of order m = 3–6
m vv r Ring valence connectivity of order m = 3–6
ST (i) Kier–Hall electrotopological state indices
m j Kappa index of order m = 1–3
m ja Kappa alpha index of order m = 1–3
U Shape flexibility index
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The standard error is 10.5 K and the absolute aver-
age error (AEE) between the experimental and calcu-
lated Tg value is only 7.7 K for the 80 OLED materials
in Table 1. The plot of calculated Tgs versus experi-
mental Tgs for this model is shown in Fig. 2. The best
five descriptors and the characteristics of these descrip-
tors are shown in Table 4. The t-value indicates that the
five parameters all are significant descriptors in the
QSPR model. The cross-validated correlation coefficient
(R2

CV = 0.9157) shows the stability of this model. The
data set of experimental Tgs was divided into two sub-
sets according to their magnitude and the AAEs were
essentially constant (7.9 and 7.6 K). This also indicates
the stability of the model.

By interpreting the descriptors in the regression
model, it is possible to gain some insights into factors
that are likely to relate to the Tg values of OLED
materials. According to Eq. 1, Tgs of OLED materials
are influenced mainly by the molecular size and the

molecular shape. The emergence of the sixth-order path
and path–valence connectivity index 6 vp and

6 vv
p in the

correlation equation is connected with the size of the
molecule. Their positive signs indicate that the larger the
OLED molecule is, the higher Tg is. The presence of
the Balaban index J in the equation reflects the influence
of the number of rings on the value of Tg. As shown in
the definition of J in the Appendix, the index decreases
with increasing number of rings. The negative sign of
the Balaban index indicates that the more rings in the
OLED molecule, the higher Tg is. The presence of the
third-order cluster valence connectivity index 3 vv

c

shows the influence of the branching number on the
value of Tg. The index increases with increased chain
branching. The coefficient for the 3 vv

c variable is po-
sitive, meaning that as branching increases, the Tg in-
creases. The importance of the branch points in an
aromatic ring to the Tg value is apparent due to the
presence of the third-order path–valence connectivity
index 3 vv

p. The
3 vv

p index is larger for adjacent branch
points than for separated branch points. Since the
coefficient for the 3 vv

p variable is negative, increased
adjacency decreases the glass transition temperature.

The results obtained exclusively using topological
descriptors herein are comparable in quality to those
obtained by Yin et al. [8] for the glass transition tem-
peratures of OLED materials by using the CODESSA
approach (R2 = 0.9304 vs. 0.9270, R2

CV= 0.9157 vs.
0.9105, F = 197.64 vs. 139.61, s = 10.489 vs. 10.722,
AAE = 7.7 K vs. 10.1 K). The CODESSA approach
searches for linear correlations of a given property by
using more than 600 descriptors of several classes:
constitutional, topological, electrostatic, geometric,
quantum-chemical, and thermodynamic ones. In Yin’s
model, the most significant descriptor is the relative
number of rings (RNR), which encodes information
about the chain stiffness of small molecules. It has very
similar structural meaning as the Balaban index J, which

Table 3 Results of step-wise
multi-linear regression analysis
(MLRA) with Leave-one-out
(LOO) cross-validation for best
correlation model

No. Descriptor R F s

1 6 vp 0.7734 116.818 24.493
2 6 vp, U 0.8745 124.689 18.923
3 6 vp, U, J 0.9049 113.426 16.755
4 6 vp, U, J, 4 vv c 0.9199 100.883 15.628
5 6 vp, U, J, 4 vv c,

3 vv p 0.9415 112.440 13.554
6 6 vp, U, J, 4 vv c,

3 vv p,
3 vv c 0.9564 114.087 12.421

7 6 vp, U, J, 4 vv c,
3 vv p,

3 vv c,
6 vv p 0.9661 138.510 12.348

8 6 vp, U, J, 3 vv p,
3 vv c,

6 vv p 0.9660 163.743 10.523
9 J, 3 vv c,

3 vv p,
6 vp,

6 vv p 0.9656 197.643 10.489
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Table 4 Descriptors included in
the best five-parameter model
for the prediction of glass
transition temperatures (Tgs)

Descriptor Coefficient SD t-value t-probability

Constant 469.005 13.367 35.086 0.000,000
J �131.568 10.734 �12.257 0.000,000
3 vv c 14.778 2.005 7.370 0.000,000
3 vv p� 18.242 1.129 �16.161 0.000,000
6 vp 10.977 0.739 14.852 0.000,000
6 vv p 16.652 1.948 8.549 0.000,000
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is the second important descriptors in the present model.
These facts confirm the potency of topological indices as
a useful tool for the structural characterization and
prediction of Tgs of OLED materials.

Conclusions

This work shows that the glass transition temperatures
of OLED materials can be estimated with a simple
correlation (R2 = 0.9304 and AEE = 7.7 K) using only
topological indices as input parameters. The proposed
correlation contains five descriptors that indicate that
Tgs of OLED materials are influenced mainly by the
molecular size and the molecular shape. This model
gives reasonable accuracy and it is predictive because
topological indices can be calculated easily as long as the
molecular structure of the compound concerned is
known. Therefore, this model should be useful in
development of new OLED materials.

Acknowledgments The authors gratefully wish to express their
thanks to the reviewers for critically reviewing the manuscript and
making important suggestions.

Appendix

The definitions of topological indices used in this work
are shown below:

Wiener indices

The Wiener number, W, is the sum of distances in a
molecular graph [18]. For a given connected molecular
graph G

W ¼ 1

2

XN

i¼1

XN

j¼1
Dij

where Dij is a distance matrix of the shortest paths be-
tween any two vertices for N vertices. Dij = lij if i „ j,
otherwise equal to zero. lij is the shortest distance be-
tween vertices i and j.

Balaban indices

The Balaban index, J, is the average-distance sum
connectivity [19–21]. For a given connected molecular
graph G

J ¼ M
lþ 1

X
ðDiDjÞ�0:5

where M is the number of edges in G. l denotes the ring
number of G. In a polycyclic graph, l is the minimum
number of edges that must be removed before G

becomes acyclic. Di ¼
P
j¼1

Dij and Dijis defined as for the
Wiener index.

Randic–Kier–Hall subgraph connectivity indices

The vt indices may be derived from the adjacency matrix
[22–24] and they are defined as

mvt ¼
XNm

j¼1

mSj

where m is the subgraph order, that is, the number of
edges in the subgraph, Nm is the number of type t order
m subgraphs within the whole graph, and m Sj is a factor
defined for each subgraph as

mSj ¼
Ymþ1

i¼1
ðdiÞ�1=2j

where j denotes the particular set of edges that consti-
tutes the subgraph and di is the degree of vertex i, that is,
its number of edges.

Valence connectivity indices are defined similarly,
substituting di by di

v, defined as

dv
i ¼

Zv � hi

Z � Zv � 1

where Z is the atomic number of the atom i,Zv the
number of valence electrons, and hi is the number of H
atoms attached to it.

Kier–Hall electrotopological state indices

Kier and Hall [25, 26] developed electrotopological state
indices (E-state indices), based on the electronegativity
of an atom and its local topology. The E-state (Si) of an
atom i (non-hydrogens) is calculated by evaluating the
intrinsic state value (Ii) and the perturbation arising
from all the other skeletal atoms (DIi):

Si ¼ ðIi þ DIiÞ

where

Ii ¼
½ð2=NiÞ2dv þ 1�

d
; DIi ¼

XNi

j¼1
ðIi � IjÞ=r2ij

and: Ni is the principal quantum number of atom i,dv is
the count of valence electrons in the skeleton; d the
count of s electrons in the skeleton (see Randic–Kier–
Hall Subgraph Connectivity Indices, earlier), DIi the
perturbation on atom i by all other skeletal atoms j,rij is
the number of atoms in the shortest path between atoms
i and j (including i and j). Electrotopological state
indices of the type of atoms are obtained by summing
the electrotopological states for each present type of
atoms in the molecule, ST (i).
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Kier–Hall Kappa indices

The Kappa indices are the basis of a method of molec-
ular structure quantitation in which attributes of
molecular shape are encoded into three indices (Kappa
values) [27–29]. These Kappa values are derived from
counts of one-bond, two-bond, and three-bond frag-
ments, each count being made relative to fragment
counts in reference structures which possess a maximum
and minimum value for that number of atoms.

Shape flexibility index or U. Flexibility of a molecule
is directly related to the degree of linearity and the
presence of cycles and/or branching [27–29]. The Kappa
alpha indices measure these factors while also taking the
effects of atomic identities on shape into account. Hall
and Kier found that by combining 1 ja and 2 ja indices,
a further index U, which measured flexibility, could be
defined:

U ¼ ð1ja �2 jaÞ=A
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